If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8j^2+15j-2=0
a = 8; b = 15; c = -2;
Δ = b2-4ac
Δ = 152-4·8·(-2)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-17}{2*8}=\frac{-32}{16} =-2 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+17}{2*8}=\frac{2}{16} =1/8 $
| 3w-2w+w=10 | | -15=-8x-7+7x | | 2d-18=3 | | 10t+-6t-t-2t-4t=15 | | -370=10(10a-7) | | (x+3)=(3x+1) | | -15.09+r=9.085 | | 6x+3-5x-5=-2 | | 10t−6t−t−–2t−4t=15 | | 3j^2-28j+9=0 | | 12=-0.01x^2+0.7x+6 | | 19k+2k-11k-8k=14 | | 2k^2-19k+9=0 | | F(x)=-8+5x | | 0=(x^2-5x+6) | | 37=13-2x | | 11-3w+7w=-45 | | 0.0006x3-77.523x2+3E+06x-5E+10R²=0.2349 | | -6v-15v+18v=15 | | 3(x+5)=-3x-21+4x | | 6c+4c-5c+3c-6c=12 | | x+3/7=x/4 | | -11=1-2k+4k | | 4b-3b=12 | | 40–2x+11=‐8x+100 | | -2y-1=y-25 | | 9w^2-49=0 | | 2q^2+11q+14=0 | | -31=-3+4x | | 2(x+4)=4x+3-2x+5. | | 15x−–13x+–15x−4x=–18 | | -365=-5(8r+1) |